Utilisation of voltage and frequency dependence of stress-grading materials in dielectric diagnostics

N. Taylor and H. Edin

KTH - Department of Electrical Engineering, Stockholm, SWEDEN

Introduction

The end-winding regions of large electrical machines and the terminations of medium-voltage cables are situations in which an earthed shield stops abruptly, which would naturally lead to a stress concentration around its edge. Several broad methods are used to control this effect; current practice commonly uses SiC in a base material to give a voltage-dependent resistance. Modern stress-grading materials result in capacitance and loss components that vary with frequency and with voltage. Dielectric measurements from some stress-grading systems are presented here, to indicate the considerable voltage and frequency dependence and the resultant distortion of currents.

Experimental results

Dielectric responses of several stress-grading systems have been measured on simple models made of PTFE insulation around a bar. The grading response then accounts for almost all loss and for a significant capacitance. In the examples below, there is no PD activity to influence the response.

Commonly used field-grading systems make a large contribution to frequency-dependent and voltage-dependent components in DS measurements. Control of both voltage amplitude and frequency, and simultaneous PD measurement to distinguish PD and other non-linearities, may be worthwhile in helping to distinguish the responses of PD, stress grading and the main dielectric.

Conclusions